Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 194(2): 225-237, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065361

RESUMEN

Cerebral edema frequently develops in the setting of brain infection and can contribute to elevated intracranial pressure, a medical emergency. How excess fluid is cleared from the brain is not well understood. Previous studies have shown that interstitial fluid is transported out of the brain along perivascular channels that collect into the cerebrospinal fluid (CSF)-filled subarachnoid space. CSF is then removed from the central nervous system through venous and lymphatic routes. The current study tested the hypothesis that increasing lymphatic drainage of CSF would promote clearance of cerebral edema fluid during infection with the neurotropic parasite Toxoplasma gondii. Fluorescent microscopy and magnetic resonance imaging was used to show that C57BL/6 mice develop vasogenic edema 4 to 5 weeks after infection with T. gondii. Tracer experiments were used to evaluate how brain infection affects meningeal lymphatic function, which demonstrated a decreased rate in CSF outflow in T. gondii-infected mice. Next, mice were treated with a vascular endothelial growth factor (VEGF)-C-expressing viral vector, which induced meningeal lymphangiogenesis and improved CSF outflow in chronically infected mice. No difference in cerebral edema was observed between mice that received VEGF-C and those that rececived sham treatment. Therefore, although VEGF-C treatment can improve lymphatic outflow in mice infected with T. gondii, this effect does not lead to increased clearance of edema fluid from the brains of these mice.


Asunto(s)
Edema Encefálico , Toxoplasma , Toxoplasmosis , Factor C de Crecimiento Endotelial Vascular , Animales , Ratones , Encéfalo/patología , Edema Encefálico/parasitología , Edema Encefálico/terapia , Ratones Endogámicos C57BL , Toxoplasmosis/complicaciones , Toxoplasmosis/terapia , Factor C de Crecimiento Endotelial Vascular/uso terapéutico
2.
Elife ; 112022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36541708

RESUMEN

The discovery of meningeal lymphatic vessels that drain the CNS has prompted new insights into how immune responses develop in the brain. In this study, we examined how T cell responses against CNS-derived antigen develop in the context of infection. We found that meningeal lymphatic drainage promotes CD4+ and CD8+ T cell responses against the neurotropic parasite Toxoplasma gondii in mice, and we observed changes in the dendritic cell compartment of the dural meninges that may support this process. Indeed, we found that mice chronically, but not acutely, infected with T. gondii exhibited a significant expansion and activation of type 1 and type 2 conventional dendritic cells (cDC) in the dural meninges. cDC1s and cDC2s were both capable of sampling cerebrospinal fluid (CSF)-derived protein and were found to harbor processed CSF-derived protein in the draining deep cervical lymph nodes. Disrupting meningeal lymphatic drainage via ligation surgery led to a reduction in CD103+ cDC1 and cDC2 number in the deep cervical lymph nodes and caused an impairment in cDC1 and cDC2 maturation. Concomitantly, lymphatic vessel ligation impaired CD4+ and CD8+ T cell activation, proliferation, and IFN-γ production at this site. Surprisingly, however, parasite-specific T cell responses in the brain remained intact following ligation, which may be due to concurrent activation of T cells at non-CNS-draining sites during chronic infection. Collectively, our work reveals that CNS lymphatic drainage supports the development of peripheral T cell responses against T. gondii but remains dispensable for immune protection of the brain.


Asunto(s)
Toxoplasma , Ratones , Animales , Encéfalo/metabolismo , Meninges/patología , Linfocitos T CD8-positivos , Control de Enfermedades Transmisibles
3.
PLoS Pathog ; 18(9): e1010637, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067217

RESUMEN

Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that establishes a life-long chronic infection largely restricted to the central nervous system (CNS). Constant immune pressure, notably IFN-γ-STAT1 signaling, is required for preventing fatal pathology during T. gondii infection. Here, we report that abrogation of STAT1 signaling in microglia, the resident immune cells of the CNS, is sufficient to induce a loss of parasite control in the CNS and susceptibility to toxoplasmic encephalitis during the early stages of chronic infection. Using a microglia-specific genetic labeling and targeting system that discriminates microglia from blood-derived myeloid cells that infiltrate the brain during infection, we find that, contrary to previous in vitro reports, microglia do not express inducible nitric-oxide synthase (iNOS) during T. gondii infection in vivo. Instead, transcriptomic analyses of microglia reveal that STAT1 regulates both (i) a transcriptional shift from homeostatic to "disease-associated microglia" (DAM) phenotype conserved across several neuroinflammatory models, including T. gondii infection, and (ii) the expression of anti-parasitic cytosolic molecules that are required for eliminating T. gondii in a cell-intrinsic manner. Further, genetic deletion of Stat1 from microglia during T. gondii challenge leads to fatal pathology despite largely equivalent or enhanced immune effector functions displayed by brain-infiltrating immune populations. Finally, we show that microglial STAT1-deficiency results in the overrepresentation of the highly replicative, lytic tachyzoite form of T. gondii, relative to its quiescent, semi-dormant bradyzoite form typical of chronic CNS infection. Our data suggest an overall protective role of CNS-resident microglia against T. gondii infection, illuminating (i) general mechanisms of CNS-specific immunity to infection (ii) and a clear role for IFN-STAT1 signaling in regulating a microglial activation phenotype observed across diverse neuroinflammatory disease states.


Asunto(s)
Encefalitis , Factor de Transcripción STAT1 , Toxoplasma , Toxoplasmosis Cerebral , Animales , Encéfalo/patología , Encefalitis/metabolismo , Encefalitis/patología , Ratones , Microglía/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis Cerebral/metabolismo
4.
FASEB J ; 35(10): e21928, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34559924

RESUMEN

Limb contractures are a debilitating and progressive consequence of a wide range of upper motor neuron injuries that affect skeletal muscle function. One type of perinatal brain injury causes cerebral palsy (CP), which affects a child's ability to move and is often painful. While several rehabilitation therapies are used to treat contractures, their long-term effectiveness is marginal since such therapies do not change muscle biological properties. Therefore, new therapies based on a biological understanding of contracture development are needed. Here, we show that myoblast progenitors from contractured muscle in children with CP are hyperproliferative. This phenotype is associated with DNA hypermethylation and specific gene expression patterns that favor cell proliferation over quiescence. Treatment of CP myoblasts with 5-azacytidine, a DNA hypomethylating agent, reduced this epigenetic imprint to TD levels, promoting exit from mitosis and molecular mechanisms of cellular quiescence. Together with previous studies demonstrating reduction in myoblast differentiation, this suggests a mechanism of contracture formation that is due to epigenetic modifications that alter the myogenic program of muscle-generating stem cells. We suggest that normalization of DNA methylation levels could rescue myogenesis and promote regulated muscle growth in muscle contracture and thus may represent a new nonsurgical approach to treating this devastating neuromuscular condition.


Asunto(s)
Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Metilación de ADN , Perfilación de la Expresión Génica , Músculo Esquelético/patología , Mioblastos/metabolismo , Mioblastos/patología , Transcripción Genética , Adolescente , Azacitidina/farmacología , Azacitidina/uso terapéutico , Lesiones Encefálicas/metabolismo , Proliferación Celular , Parálisis Cerebral/tratamiento farmacológico , Parálisis Cerebral/patología , Niño , Preescolar , Metilación de ADN/efectos de los fármacos , Femenino , Humanos , Masculino , Músculo Esquelético/metabolismo , Mioblastos/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
5.
Am J Physiol Cell Physiol ; 315(2): C247-C257, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29694232

RESUMEN

Cerebral palsy (CP) is the most common cause of pediatric neurodevelopmental and physical disability in the United States. It is defined as a group of motor disorders caused by a nonprogressive perinatal insult to the brain. Although the brain lesion is nonprogressive, there is a progressive, lifelong impact on skeletal muscles, which are shorter, spastic, and may develop debilitating contractures. Satellite cells are resident muscle stem cells that are indispensable for postnatal growth and regeneration of skeletal muscles. Here we measured the myogenic potential of satellite cells isolated from contractured muscles in children with CP. When compared with typically developing (TD) children, satellite cell-derived myoblasts from CP differentiated more slowly (slope: 0.013 (SD 0.013) CP vs. 0.091 (SD 0.024) TD over 24 h, P < 0.001) and fused less (fusion index: 21.3 (SD 8.6) CP vs. 81.3 (SD 7.7) TD after 48 h, P < 0.001) after exposure to low-serum conditions that stimulated myotube formation. This impairment was associated with downregulation of several markers important for myoblast fusion and myotube formation, including DNA methylation-dependent inhibition of promyogenic integrin-ß 1D (ITGB1D) protein expression levels (-50% at 42 h), and ~25% loss of integrin-mediated focal adhesion kinase phosphorylation. The cytidine analog 5-Azacytidine (5-AZA), a demethylating agent, restored ITGB1D levels and promoted myogenesis in CP cultures. Our data demonstrate that muscle contractures in CP are associated with loss of satellite cell myogenic potential that is dependent on DNA methylation patterns affecting expression of genetic programs associated with muscle stem cell differentiation and muscle fiber formation.


Asunto(s)
Parálisis Cerebral/patología , Contractura/patología , Desarrollo de Músculos/fisiología , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/patología , Células Madre/patología , Adolescente , Diferenciación Celular/fisiología , Parálisis Cerebral/metabolismo , Niño , Preescolar , Contractura/metabolismo , Regulación hacia Abajo/fisiología , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrinas/metabolismo , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/metabolismo , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...